multiple impacts

[1] D.R. Lowe, G.R. Byerly, Early Archean silicate spherules of probable impact origin, South Africa and Western Australia, Geology 14 (1986) 83^86. EPSL 7040 25-3-04 Cyaan Magenta Geel Zwart A.Y. Glikson et al. / Earth and Planetary Science Letters 221 (2004) 383^396 395 [2] B.M. Simonson, Geological evidence for an early Precambrian microtektite strewn ¢eld in the Hamersley Basin of Western Australia, Geol. Soc. Am. Bull. 104 (1992) 829^ 839. [3] B.M. Simonson, S.W. Hassler, Revised correlations in the early Precambrian Hamersley Basin based on a horizon of resedimented impact spherules, Aust. J. Earth Sci. 44 (1997) 37^48. [4] S.W. Hassler, B.M. Simonson, The sedimentary record of extraterrestrial impacts in deep shelf environments: Evidence from the early Precambrian, J. Geol. 109 (2001) 1^19. [5] G.R. Byerly, D.R. Lowe, J.L. Wooden, X. Xiaoogang, A meteorite impact layer 3470 Ma from the Pilbara and Kaapvaal Cratons, Science 297 (2002) 1325^1327. [6] D.R. Lowe, G.R. Byerly, F.T. Kyte, A. Shukolyukov, F. Asaro, A. Krull, Spherule beds V3.47^3.34 Ga-old in the Barberton greenstone belt, South Africa. A record of large meteorite impacts and their in£uence on early crustal and biological evolution, Astrobiology 3 (2003) 7^48. [7] F.T. Kyte, A. Shukloyukov, G.W. Lugmair, D.R. Lowe, G.R. Byerly, Early Archaean spherule beds: Chromium isotopes con¢rm origin through multiple impacts of projectiles of carbonaceous chondrite type, Geology 31 (2003) 283^286. [8] G.R. Byerly, D.R. Lowe, Spinels from Archaean impact spherules, Geochim. Cosmochim. Acta 58 (1994) 3469^ 3486. [9] B. Chadwick, P. Claeys, B.M. Simonson, New evidence for a large Palaeoproterozoic impact spherules in a dolomite layer in the Ketilidian orogen, South Greenland, J. Geol. Soc. Lond. 15 (2000) 331^340. [10] B.P. Glass, C.A. Burns, Microkryrtites, a new term for impact-produced glassy spherules containing primary crystallites, Proc. Lunar Planet. Sci. 18 (1988) 455^458. [11] R. Buick, Comment on Lowe, D.R., and Byerly, G.R., 1986, Geology 14 (1987) 83^86. [12] M.J. Van Kranendonk, A.H. Hickman, R.S. Smithies, D.R. Nelson, Geology and tectonic evolution of the Archaean North Pilbara Terrain, Pilbara Craton, Western Australia, Econ. Geol. 97 (2002) 695^732. [13] R. Buick, J.R. Thornett, N.J. McNaughton, J.B. Smith, M.E. Barley, Record of emergent continental crust V3.5 billion years ago in the Pilbara Craton of Australia, Nature 375 (1995) 574^577. [14] M.J. Van Kranendonk, P. Morant, Revised Archaean stratigraphy of the North Shaw 1 000 sheet, Pilbara Craton, Geol. Surv. West. Aust. Ann. Rep. 1997 (1998) 55^ 62. [15] A.H. Hickman, Crustal evolution of the Pilbara Block, Western Australia, Geol. Soc. Aust. Spec. Publ. 7 (1984) 57^69. [16] M.J. Van Kranendonk, Geology of the North Shaw 1:100 000 Sheet, Geological Survey of Western Australia 1:100 000, Geol. Ser., 2000, 86 pp. [17] B.M. Simonson, Petrographic criteria for recognizing certain types of impact spherules in well-preserved Precambrian successions, Astrobiology 1 (2003) 149^165. [18] B.F. Bohor, B.P. Glass, Origin and diagenesis of K/T impact spherules from Haiti to Wyoming and beyond, Meteoritics 39 (1995) 182^198. [19] J.S.R. Dunlop, R. Buick, Archaean epiclastic sediments derived from ma¢c volcanics, North Pole, Pilbara Block, Western Australia, Geol. Soc. Aust. Spec. Publ. 7 (1981) 225^233. [20] A.Y. Glikson, A.H. Hickman, Geochemical stratigraphy of Archaean ma¢c^ultrama¢c volcanic successions, eastern Pilbara Block, Western Australia, in: J.E. Glover, D.I. Groves (Eds.), Archaean Geology, Geol. Soc. Aust. Spec. Publ. 7 (1981) 287^300. [21] A.Y. Glikson, R. Davy, A.H. Hickman, Trace metal distribution in basalts, Pilbara craton, Western Australia, with stratigraphic^geochemical implications. Bur. Miner. Resourc. Geol. Geophys. Rec. 46, 1991. [22] B.M. Simonson, D. Davies, M. Wallace, S. Reeves, S.W. Hassler, Iridium anomaly but no shocked quartz from Late Archean microkrystite layer, oceanic impact ejecta?, Geology 26 (1998) 195^198. [23] W.F. McDonough, S. Sun, Composition of the Earth, Chem. Geol. 120 (1995) 223^253. [24] J.D. O’Keefe, J.D. Aherns, Interaction of the Cretaceous/ Tertiary extinction bolide with the atmosphere, Geol. Soc. Am. Spec. Pap. 190 (1982) 103^120. [25] H.J. Melosh, A.M. Vickery, Melt droplet formation in energetic impact events, Nature 350 (1991) 494^497. [26] A.D. Alt, J.W. Sears, D.W. Hyndman, Terrestrial maria: The origins of large basalt plateaus, hotspot tracks and spreading ridges, J. Geol. 96 (1988) 647^662. [27] A.Y. Glikson, Mega-impacts and mantle melting episodes, tests of possible correlations, J. Aust. Geol. Geophys. 16 (1996) 587^608. [28] A.Y. Glikson, Oceanic mega-impacts and crustal evolution, Geology 27 (1999) 337^341. [29] A.Y. Glikson, The astronomical connection of terrestrial evolution, crustal e¡ects of post-3.8 Ga mega-impact clusters and evidence for major 3.2 S 0.1 Ga bombardment of the Earth-Moon system, J. Geodyn. 32 (2001) 205^ 229. [30] D.H. Abbott, A.E. Isley, Extraterrestrial in£uences on mantle plume activity, Earth Planet. Sci. Lett. 205 (2002) 53^62. [31] M.D. Norman, W.L. Gri⁄n, N.J. Pearson, M.O. Garcia, S.Y. O’Reilly, Quantitative analysis of trace elements abundances in glasses and minerals, a comparison of laser ablation inductively coupled plasma mass spectrometry, solution inductively plasma mass spectrometry, proton microprobe and electron microprobe data, J. Analyt. Atom. Spectrom. 13 (1998) 477^482. [32] S.M. Eggins, J.M.G. Shelley, Compositional heterogeneity in NIST SRM 610^617 Glasses, Geostand. Newslett. 26 (1999) 269^286. [33] A. Rotcholl, Major and trace element composition and homogeneity of microbeam reference material, basalt glass USGS BCR-2g, Geostand. Newslett